Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits.
نویسندگان
چکیده
The use of nerve guidance conduits to repair peripheral nerve discontinuities has attracted much attention from the biomaterials community, with many resorbable and non-resorbable materials in clinical use. However, a material with ideal biocompatibility, sufficient mechanical properties (to match that of the regenerating nerve) coupled with a suitable degradation rate, has yet to be realized. Recently, potential solutions (composite nerve guidance conduits) which support the emerging philosophy of allowing synthetic materials to establish key interactions with cells in ways that encourage self-repair (i.e. ionic mediators of repair such as those observed in hard tissue regeneration) have been proposed in the literature; such composites comprise specially designed bioactive phosphate-free glasses embedded in degradable polymeric matrices. Whilst much research has focussed on the optimization of such composites, there is no published literature on the performance of these experimental compositions under simulated physiological conditions. To address this key limitation, this paper explores the time-dependent variations in wet-state mechanical properties (tensile modulus and ultimate tensile strength) for NGC composites containing various compositions of PLGA (at 12.5, and 20 wt%), F127 (at 0, 2.5 and 5 wt%) and various loadings of Si-Na-Ca-Zn-Ce glass (at 0 and 20 wt%). It was observed that Young's modulus and ultimate tensile strength of these composites were in the range 5-203 MPa and 1-7 MPa respectively, indicating comparable mechanical performance to clinical materials. Furthermore, an analysis of the cytocompatibility of experimental compositions showed comparable (in some instances superior), compatibility when compared with the commercial product Neurolac(®). Based on current synthetic devices and the demands of the indication, the CNGCs examined in this work offer appropriate mechanical properties and compatibility to warrant enhanced development.
منابع مشابه
Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کاملMechanical Properties Characterization of Biax and Triax Composites Based on Limited Experimental Data
The main goal of this research is to extract the full mechanical properties of stitch biax and triax composite materials which are necessary for finite element analysis, based on limited available experimental data and without performing full static characterization tests. Utilized experimental data are limited to elastic modulus of two 0o and 45o directions. Using presented technique and afore...
متن کاملDual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was establis...
متن کاملPrediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملNew designed nerve conduits with a porous ionic cross-linked alginate/chitisan structure for nerve regeneration.
A new fabrication process for designing nerve conduits with a porous ionic cross-linked alginate/chitosan composite for nervous regeneration could be prepared. New designed nerve conduits with a porous ionic cross-linked alginate/chitosan composite were developed for nervous regeneration. Nerve conduits (NCs) represent a promising alternative to conventional treatments for peripheral nerve repa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 7 شماره
صفحات -
تاریخ انتشار 2011